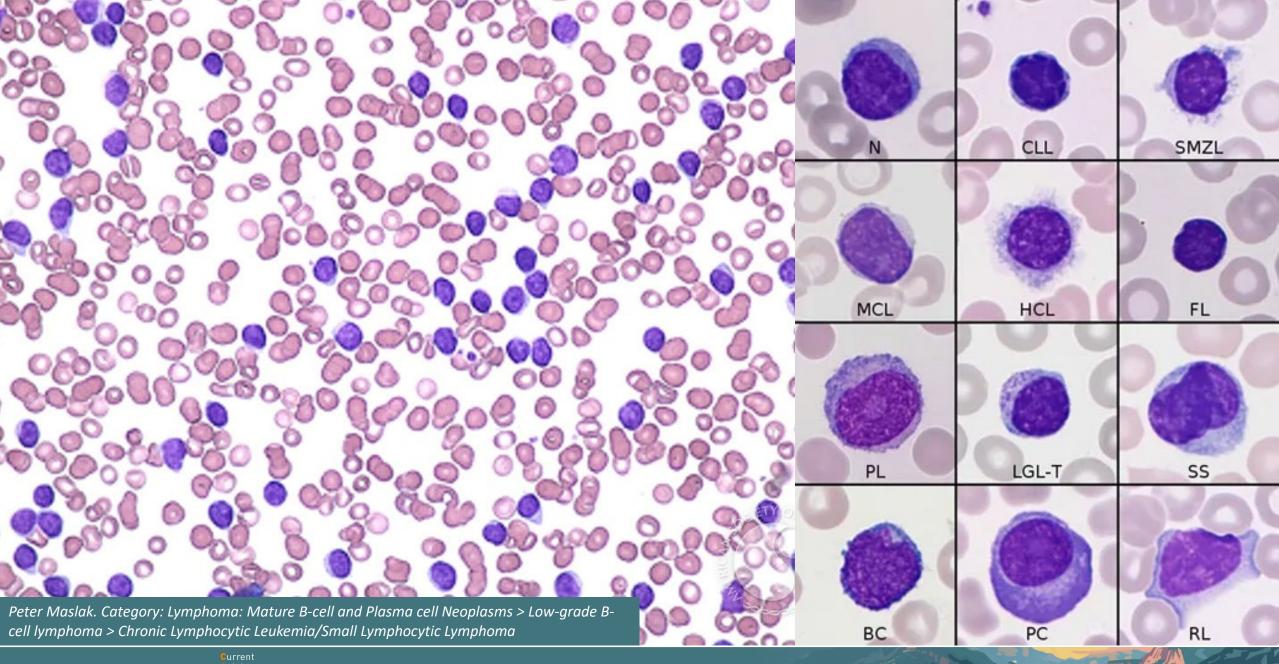

Novel prognostic biomarkers and risk stratification systems

Valentina Giudice

Dipartimento di Medicina, Chirurgia ed Odontoiatria 'Scuola Medica Salernitana' Università degli Studi di Salerno



Disclosures of Valentina Giudice

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other

Updates in Chronic Lymphocytic Leukemia and Lymphomas

COACHES

Updates in Chronic Lymphocytic Leukemia and Lymphomas

Salerno | 14 aprile 2025 | Grand Hotel Salerno

Chronic lymphocytic leukemia

Do we need novel prognostic markers?

An old question still unanswered?

D. Oscier	Serum markers		B2M, STK, sCD23, sFLC
Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK Correspondence:	Genomic abnormalities	Copy number variation Genomic complexity Chromothripsis Genetic mutations	del 13q, del 11q, p53 loss, gain8q24, +12 TP53, ATM, NOTCH1, SF3B1, BIRC3
David Oscier. E-mail: david.oscier@sky.com		Gene SNPs	
Hematology Education:	DNA methylation	Global arrays Specific genes	ZAP 70
the education program for the annual congress of the European Hematology Association 2013;7:121-130	Gene expression	mRNAs miRs Protein Global assays	CLLU1, LPL, AID 21, 29c,34a, 181b,223 CD38, CD49d, CD69, ZAP70, TCL1 Gene expression profiles, proteomics
	IGVH genes		Mutational load, VH gene usage, stereotypye
	Telomere abnormalities	Telomere length Telomerase activity	
	Functional assays	BCR, CD40 signaling P53 function	

Updates in Chronic Lymphocytic Leukemia and Lymphomas

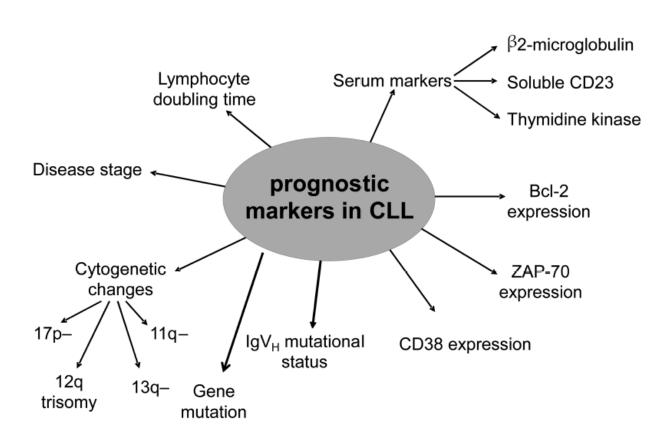
Salerno | 14 aprile 2025 | Grand Hotel Salerno

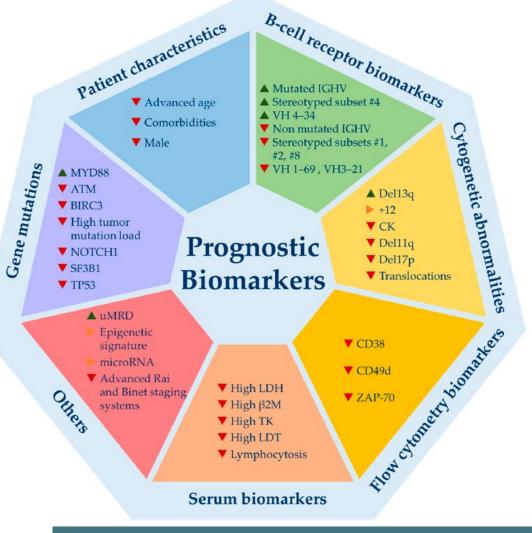
1 Daniel

Are we really moving forward?

1975	1981	2007	2014	2016	2025	_
Rai stage	Binet stage	MDACC nomogram	GCLLSG model	CLL-IPI		
Lymphocytosis; lymphadenopathy; hepatomegaly and/or splenomegaly; anemia; thrombocytopenia	Lymph node involvement; anemia; thrombocytopenia	Age; β2M; absolute lymphocyte count; sex; Rai stage; lymph node involvement	Age; sex; β2-M; TK; del17p; del11q; IGHV mutation status; ECOG	Age; clinical stage; β2-M; del17p/TP53 status; IGHV mutation status	WHAT'S NEW?	

Yun X, et al. Biomark Res. 2020 Sep 7;8:40.




Updates in Chronic Lymphocytic Leukemia and Lymphomas

Salerno | 14 aprile 2025 | Grand Hotel Salerno

C. Lania

From 2014 to 2025: are there changes?

González-Gascón-Y-Marín I, et al. Cancers (Basel). 2021 Apr 8;13(8):1782.

J.G. Gribben. EHA. 2014;8:69-74



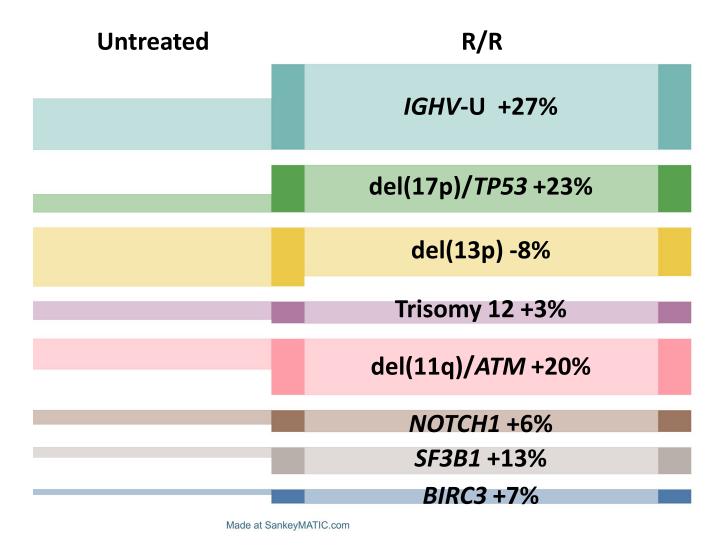
Updates in Chronic Lymphocytic Leukemia and Lymphomas

Salerno | 14 aprile 2025 | Grand Hotel Salerno

Contraction of the second

Molecular markers: biological basis

Fabbri G, Dalla-Favera R. Nat Rev Cancer. 2016 Mar;16(3):145-62.


Updates in Chronic Lymphocytic Leukemia and Lymphomas

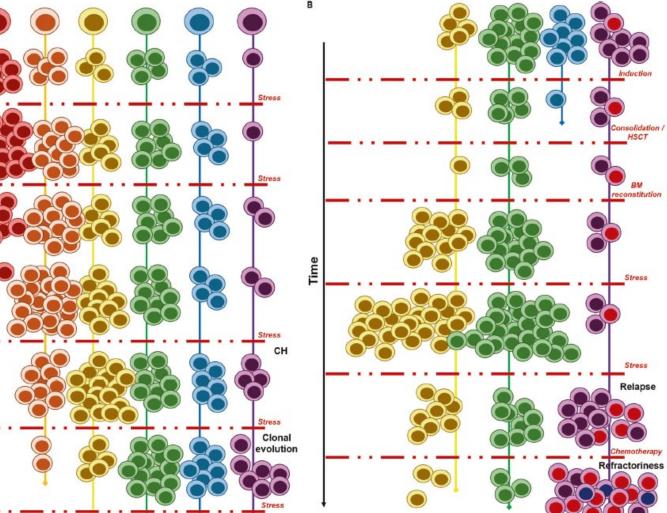
Salerno 14 aprile 2025 Grand Hotel Salerno

Dini

Molecular markers: frequencies and incidence

- TP53 mutations, IGHV unmutated status, del(17p), and del(11q), and complex karyotype associated with poor prognosis.
- Trisomy 12 intermediate prognostic factors, whereas del(13q) favorable prognosis.
- Genetic alterations associated with poor prognosis are often more enriched in patients at advanced stages or after treatment, such as *TP53* mutations, del(17p), and *IGHV* unmutated status.
- Might reflect the clonal evolution during natural disease progression or change in clonal dynamics induced by therapies, especially chemotherapies.

Modified from Lee J, Wang YL. J Mol Diagn. 2020 Sep;22(9):1114-1125.

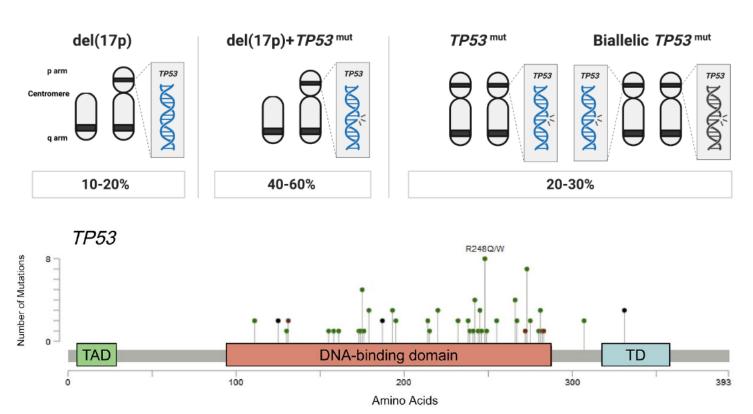


Updates in **Chronic Lymphocytic Leukemia** and **Lymphomas**

The importance of subclones

A

Variable	TTT	OS	(
TP53			6
Clonal	No impact	Shorter OS	Č
Subclonal	No impact	Shorter OS	C
SF3B1			-
Clonal	Shorter TTT	Trend for a shorter OS	
Subclonal	No impact	No impact	
BIRC3			BL
Clonal	No impact	Trend for a shorter OS	Ageing
Subclonal	No impact	No impact	<
NOTCH1			
Clonal	Shorter TTT	Shorter OS	-
Subclonal	Shorter TTT	No impact	
ATM			
Clonal	Shorter TTT	No impact	
Subclonal	*	*	-

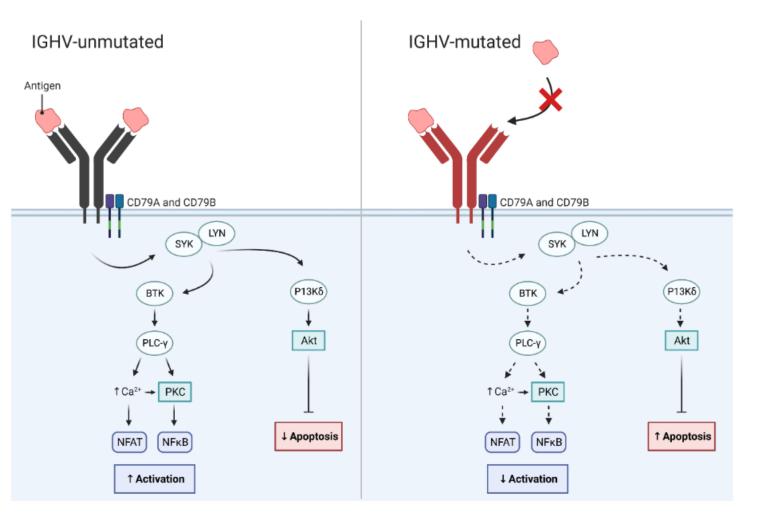


Updates in Chronic Lymphocytic Leukemia and Lymphomas

del(17p)/TP53 mutational status

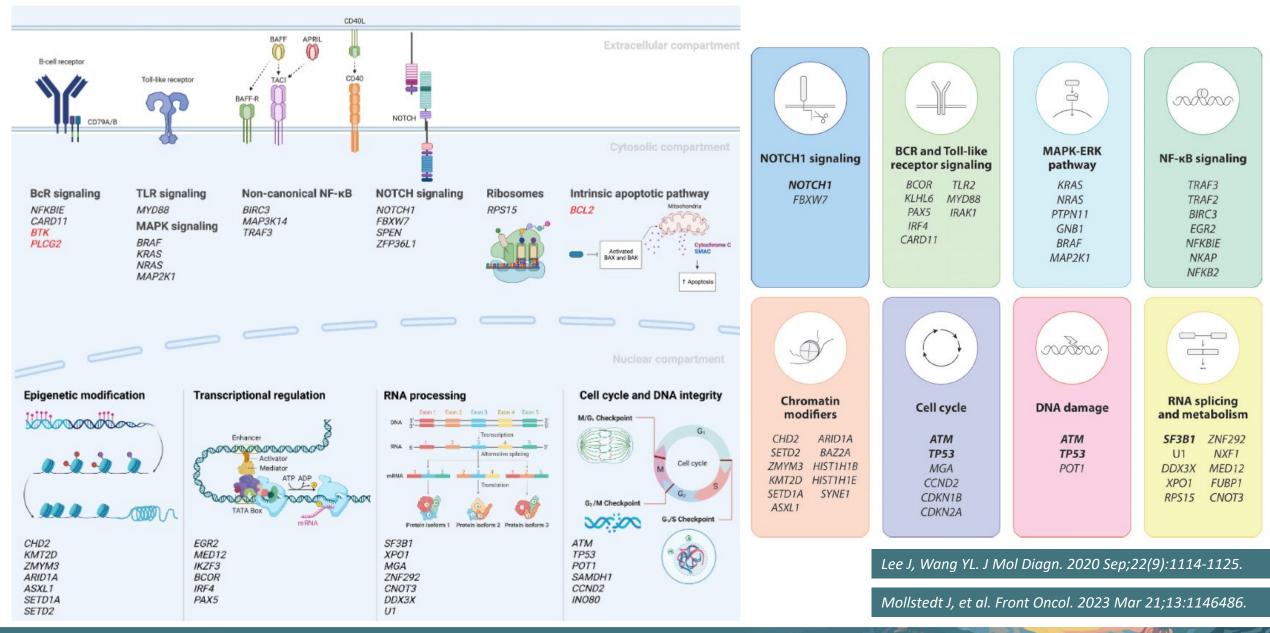
- Del(17p) and *TP53* mutations are observed in ~14% of untreated CLL, and ~37% of treated CLL.
- Deletion 17p commonly **co-occurs** with *TP53* mutation on the other allele.
- Missense, frame-shift, or splicing mutations, and usually involve the DNA binding domain encoded between exon 4 and exon 8.
- Abolish the function of TP53 as a tumor suppressor.
- Inactivation of a single *TP53* allele is associated with poor survival.
- **Bi-allelic** *TP53* inactivation confers a worse OS in all populations, in both treated and untreated patients.

Mollstedt J, et al. Front Oncol. 2023 Mar 21;13:1146486.


Lee J, Wang YL. J Mol Diagn. 2020 Sep;22(9):1114-1125.

Updates in Chronic Lymphocytic Leukemia and Lymphomas

IGHV mutational status


- IGHV mutations are generated through somatic hypermutation, a physiological process to generate Ig diversity during normal B-cell maturation.
- Unmutated IGHV is present in ~40% of untreated cases.
- Worse prognosis and poor response to chemoimmunotherapy.
- In the NGS era, IGHV remains one of the strongest independent prognostic marker.
- Unmutated IGHV could increase BCR signaling and malignant cell proliferation.
- 98% homology or 2% mutation to the germline IGV sequence is interpreted as unmutated and >2% mutation and <98% homology is considered mutated.
- A new category of 97.0% to 97.9% homology. Clinical implication is unclear.

Mollstedt J, et al. Front Oncol. 2023 Mar 21;13:1146486.

Updates in Chronic Lymphocytic Leukemia and Lymphomas

OACHES IMACHES Balerno

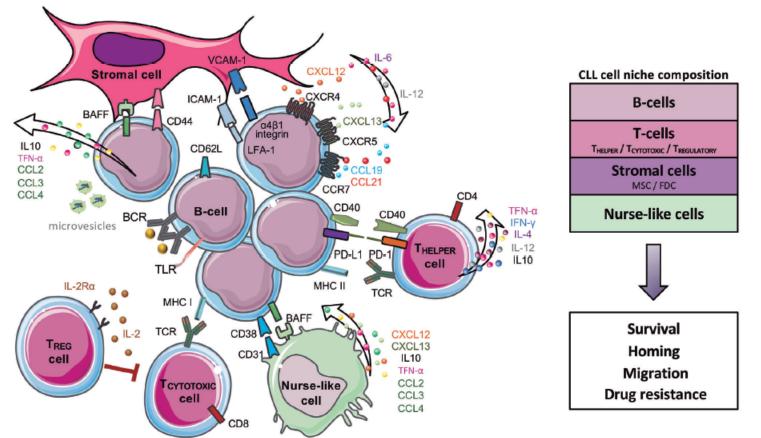
Updates in **Chronic Lymphocytic Leukemia** and **Lymphomas**

Salerno | 14 aprile 2025 | Grand Hotel Salerno

Col Laur

Epigenetic changes

- M-CLL keeps a methylation signature of germinal center-experienced cells (memory-like B cells), whereas U-CLL has a pre-germinal center, naïvelike methylation signature.
- Major hypomethylation changes occur at transcription factor binding sites such as TCF3, PU.1/SPIB, NFAT and EGR, and enhancers that modulate genes involved in B-cell function, BCR signaling, and NF-κB activation.
- A third subtype with an intermediate profile made of cases with moderate *IGHV* mutation levels.
- Different usage of *IGHV* genes, stereotypes, genomic aberrations and clinical outcome.
- The intermediate epigenetic subtype may be more heterogeneous since it includes most stereotype subset 2 cases with aggressive behavior.

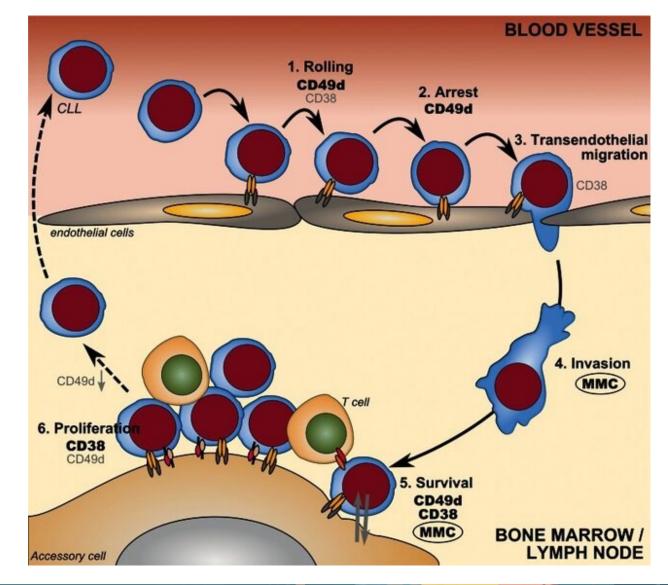

Methylation cell signature	Naïve-like	Intermediate	Memory-like
Typical IG genes	IGHV1, -5, -7 IGHD6-19 IGHJ4 IGKV1-39	IGHV3-21 IGHJ6 IGLV3-21	IGHV4-34 IGHD5-18 IGHJ6 IGKV2-30
Typical stereotype subset	1	2	4
IGHV mutations	Unmutated	Mutated or unmutated (around the 98% cutoff)	Mutated
Mutated drivers	NOTCH1 NFKBIE TP53	<i>SF3B1</i> del(11q) rarely <i>TP53</i>	del(13q)
Clinical outcome ²⁷	Aggressive; TTFT at 10 years = 97%	Intermediate; TTFT at 10 years = 38%	Indolent; TTFT at 10 years = 24%

Delgado J, et al. Haematologica. 2020 Sep 1;105(9):2205-2217.

Tumor microenvironment

- Environmental or self-antigens and homotypic interactions trigger BCR and TLR signaling, increasing activation of anti-apoptotic and proliferation pathways.
- Notch ligands activate cell migration, invasion and angiogenesis.
- BCR and NOTCH1 pathways functionally linked, mutually enhancing their activation.
- MYD88 mutations activate the NF-κB pathway in response to TLR ligands, increasing cytokine release involved in recruiting stromal and T cells.
- T- and myeloid-derived cells towards a leukemia-supportive and immunosuppressive microenvironment.
- **CD8+-cell exhaustion** and monocyte M2-like differentiation.

Delgado J, et al. Haematologica. 2020 Sep 1;105(9):2205-2217.



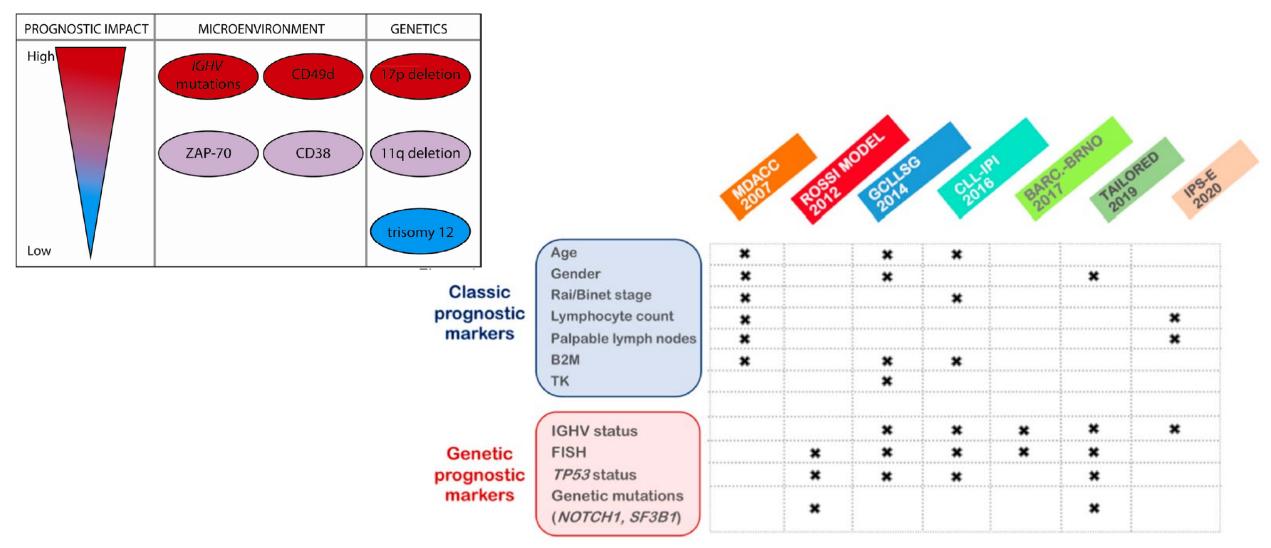
Updates in Chronic Lymphocytic Leukemia and Lymphomas

CD38/CD49d axis

- CD49d is a key molecule for homing of CLL cells with a major mechanistical role in rolling and arrest of CLL cells on the bone marrow and lymph node endothelia.
- CD38 may contribute to rolling of lymphocytes on the endothelium cells and to transendothelial migration.
- A macromolecular complex (MMC) is relevant for invasion within the lymphoid tissue and survival of CLL cells, with additional individual anti-apoptotic contributions of the molecules.
- CLL proliferation is strongly associated with CD38 expression.
- Mobilization of CLL cells from the lymphoid organs likely requires downregulation of CD49d expression or function.

Brachtl G, et al. Ann Hematol. 2014 Mar;93(3):361-74.

ACHES ^{Cpinions,} Advances, controversies in HE matology in Salerno


	CLL Prognostic Factor -Clinical Prognostic Models: 1- Rai and Benet Staging Systems	Newer Prognostic Factors	-Genetic Aberrations: 1- NOTCH1 2- ATM 3- SF3B1 4- BIRC3
Established Prognostic Factors	 -Serum Biomarkers: Lymphocyte doubling time (LDT) Serum LDH Serum β2 microglobulin , and Tyrosine Kinase -B-Cell Receptor Biomarkers: IGHV mutational status B-Cell receptor (BCR) stereotype -Flow Cytometry Biomarkers: CD38 and CD49d -Genetic Aberrations: FISH mutational panel (Del 17p, Dell1q, Trisomy 12, Del 13q) Complex Karyotype Tp53 	Prognostic Factors of Potential Interest	-Genetic Aberrations: 1- MYD88 2- Expression of antiapoptotic genes -Flow Cytometry Biomarkers: 1- ZAP70 -Others: 1- MicroRNA 2- Serum Cytokines 3- Circulating Micro-vesicles 4- Lipoprotein Lipase A and ADAM29 Expression 5- Telomere Length and Telomerase Activity 6- CLLU1 expression

Braish J, et al. Front Oncol. 2024 May 16;14:1371057.

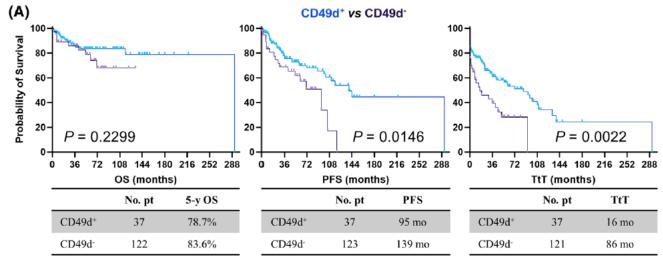
Dinin

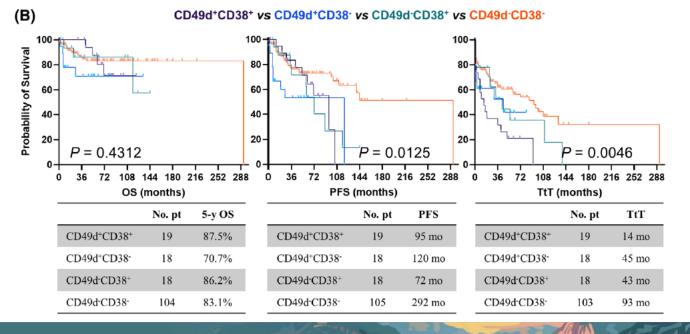
The science of making risk-stratification systems

Dal Bo M, et al. Semin Hematol. 2014 Jul;51(3):168-76.

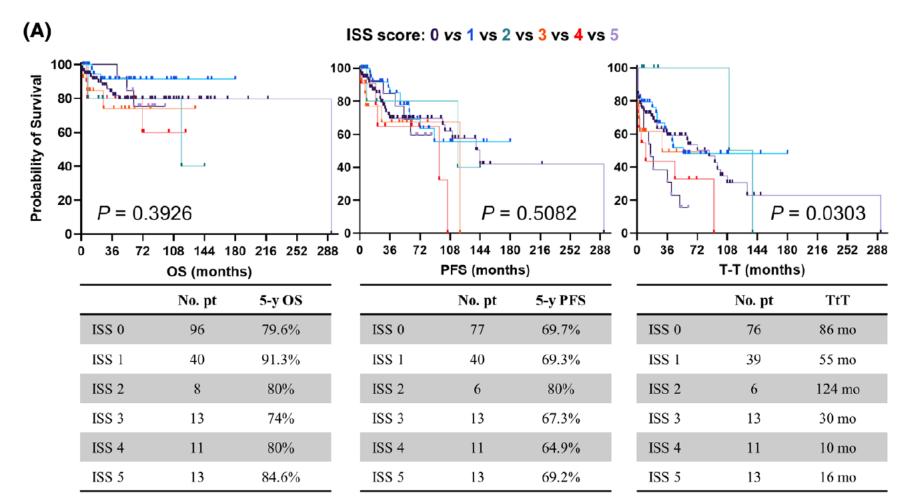
Updates in Chronic Lymphocytic Leukemia and Lymphomas

Pérez-Carretero Cet al. Diagnostics (Basel). 2021 May 10;11(5):853.


Why do we still miss flow cytometry markers?


- Patients with CD49d positivity show significantly higher β2-microglobulin levels.
- Serum levels of β2-microglobulin positively correlated with CD49d expression levels.
- Unmutated *IGHV* more frequently found in patients with CD49d.
- CD49d+ patients have shorter PFS (median, 95 months; HR, 1.96; 95%Cl, 1.012–3.804), and shorter TT (16 months; HR, 2.54; 95%Cl, 1.401–4.619).
- Patients with **CD38 positivity** with or without CD49d expression display **the shortest PFS**.
- Concomitant expression of CD49d and CD38 associated with the shortest TT (14 months).

Giudice V, et al. Eur J Haematol. 2022 Nov;109(5):483-493.



Why do we still miss flow cytometry markers?

• Flow cytometry markers alone could identify more aggressive diseases requiring early drug administration.

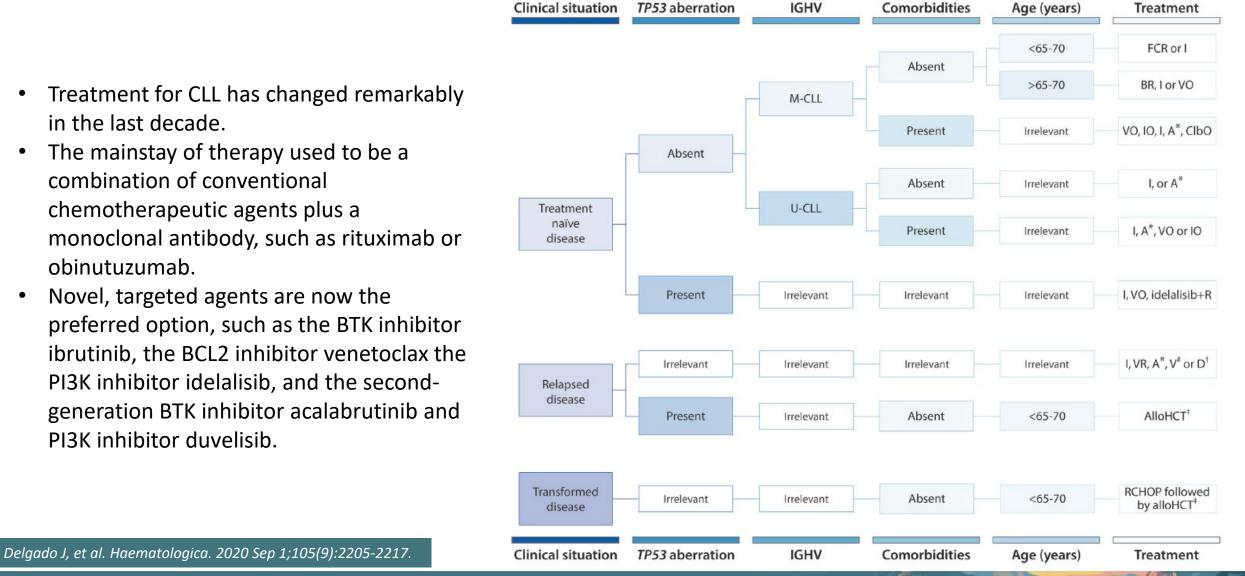
Giudice V, et al. Eur J Haematol. 2022 Nov;109(5):483-493.

Is it time to incorporate flow cytometry in risk stratification systems?

100-100 -80 80. 60 60 40-40. 20-20-P = 0.0585P < 0.0001 36 72 108 144 180 216 252 288 36 72 108 144 180 216 252 288 8 PFS (months) TtT (months) No. pt PFS TtT No. pt Low/low 69 292 mo Low/low 69 110 mo Low/Int 36 89 mo Low/Int 36 33 mo Low/High Low/High 18 144 mo 17 93 mo High/Low 20 95 mo High/Low 36 mo 19 High/Int High/Int 61 mo 41 mo 8 8 High/High 9 42 mo High/High 10 8 mo

Flow cytometry + CLL-IPI

100 - 80 - 60 - 40 - 20 -		336		100 80 60 40 20 0		P = 0.017		
30	0 36	72 10 PFS (month		180	0 36	72 108 TtT (months	144	180
							-	
		No. pt	5-y PFS	_		No. pt	TtT	
	Low/low	8	100%		Low/low	8	77 mo	
_	High/Low	25	93.3%		High/Low	25	61 mo	
	High/High	6	60%		High/High	6	5.5 mo	


Flow cytometry + IPS-E

• Flow cytometry markers could better stratify CLL patients, especially in intermediate risk.

Giudice V, et al. Eur J Haematol. 2022 Nov;109(5):483-493.

Risk stratification and tailored therapies

matology in alerno

٠

٠

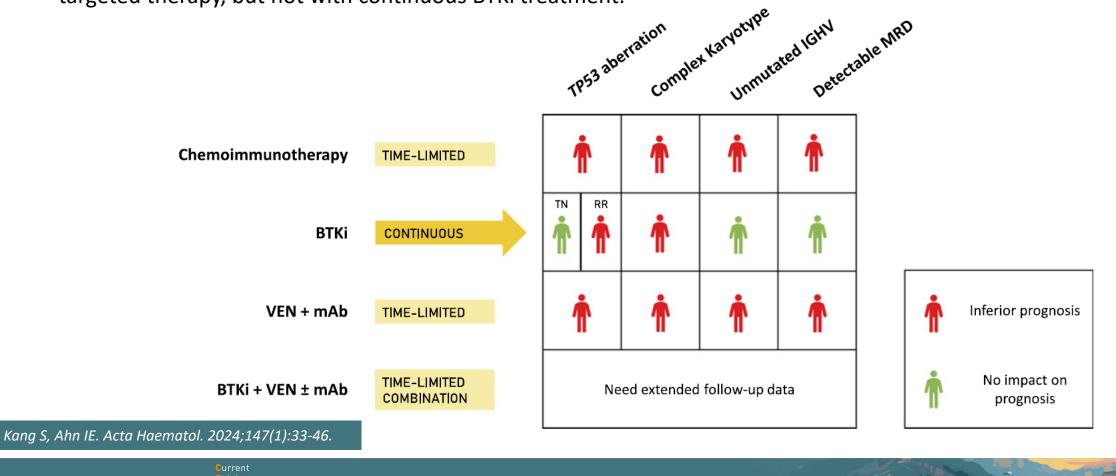
٠

Updates in Chronic Lymphocytic Leukemia and Lymphomas

Salerno 14 aprile 2025 Grand Hotel Salerno

A LAU

Risk stratification and tailored therapies


• Initial treatment with a BTKi can overcome the poor prognostic value of *TP53* aberration in TN CLL.

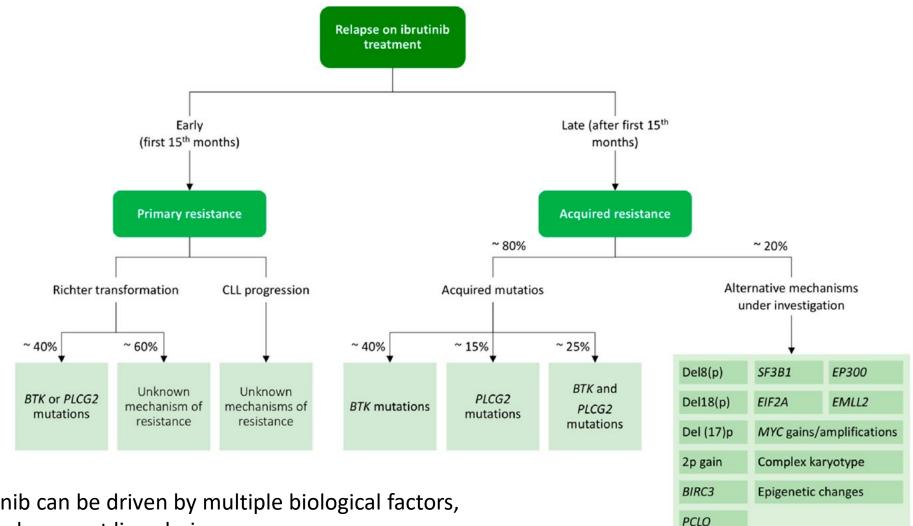
Updates in Chronic Lymphocytic Leukemia and Lymphomas

• *TP53* aberration continues to be a negative prognostic factor for RR CLL.

matology in

 IGHV mutation remains an important prognostic marker predictive of the durability of remission after time-limited targeted therapy, but not with continuous BTKi treatment.

Risk stratification and tailored therapies: we are still missing flow cytometry


- Patients with negativity for CD38 and treated with targeted therapies show the highest benefit, as CD38subjects treated with standard chemotherapy display the shortest OS (66 months).
- Co-expression of CD38 and CD49d is significantly related to shorter PFS in patients receiving BTKi or BCL2i, while targeted therapies showed an impressive protective effect in CD38-CD49d- CLL/SLL patients (5-year OS, 100% vs 46%; p=0.0181).

Mettivier L, et al. Frontiers in Oncology, under revision.

Con Louis

Treatment response and tailored therapies

Pérez-Carretero Cet al. Diagnostics (Basel). 2021 May 10;11(5):853.

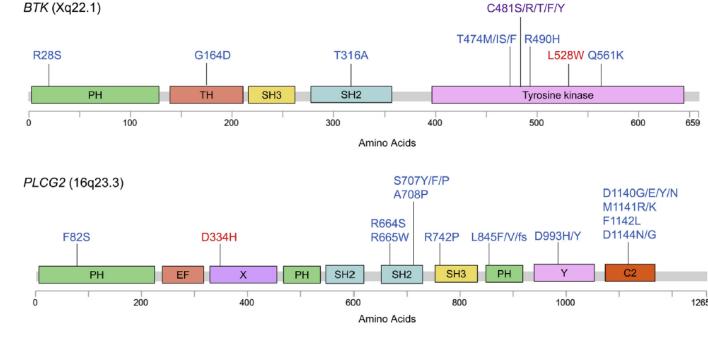
Resistance to ibrutinib can be driven by multiple biological factors, that can influence subsequent line choice.

matology in

alerno

Biomarkers	Clinical Significance in	Prognosis	
Rai/Binet advance stage	Associated with unfavorable disease course. Not enough to predict disease progression.		
β2M high (>3.5 mg/L)	Predicts worse outcome and short-term remission af different risk scoring s		
CD49d expression	Predicts shorter survival and remains valid for pre ibrutinib treatmer		
IGHV unmutated	Associated with a shorter time to first treatment and is highly recommended in pre-treatment evaluation stable during disease	and only once since its status remains	
Del(11q)/ATM mutation	Associated with a shorter time to first treatment but better response to BTK inhibitors in the presence of del($(11q)^{1}$.		
Del(17p)/TP53 mutation	Confers resistance to CIT and predicts rapid disease progression. Its assessment is mandatory in pre-treatment evaluation.		
Complex karyotype	Predicts unfavorable outcome after CIT independently of <i>TP53</i> alterations. Its role is controversial after novel targeted agents ¹ .		
NOTCH1 mutation	Refines cytogenetic-risk stratification and is associ response to rituximab tre		
SF3B1 mutation	Refines cytogenetic-risk stratification and has beer	n associated with poor prognostis ^{1.}	
BTK/PCLG2 mutation	Confers resistance to BTK inhibitors.		
BCL2 mutation	Confers resistance to venetoclax.		
MRD positive	Predicts shorter progression free-survival for CIT. Remains valid for venetoclax-based		
wind positive	regimens ¹ .	Pérez-Carretero Cet al. Diagnostics (Basel). 2021 May 10;1	

Acquired mutations and ibrutinib resistance


- *BTK* C481S mutation prevents the drug from forming a covalent bond with the C481 residue.
- BTK T316A mutation functionally confers ibrutinib resistance.
- BTK mutations found in ~70% of CLL patients who progressed on ibrutinib treatment.
- Activating mutations in *PLCG2*, found in ~10% of the.
- PLCG2 mutations mostly missense mutations clustered in the Src homology 2 domain and the calcium-binding C2 domain.
- Complex karyotype, del(17p)/TP53 mutation, and del(18p) at baseline before ibrutinib treatment are strongly associated with disease relapse.
- Minute CLL clones with BTK or PLCG2 mutations <10% of cancer cell fraction under ibrutinib.

Lee J, Wang YL. et al. J Mol Diagn. 2020 Sep;22(9):1114-1125.

Updates in Chronic Lymphocytic Leukemia and Lymphomas

Salerno 14 aprile 2025 Grand Hotel Salerno

Associated with CLL progression Associated with Richter transformation Associated with both CLL and Richter transformation

Time in clinical course	Clinical needs	Predictive markers
Before treatment	To assess risk of disease progression	Complex cytogenetics Del(17p)
		TP53
		Del(18p)
During treatment	To monitor molecular relapse	Small BTK or PLCG2 mutant clones
After relapse	To confirm drug resistance	BTK C481 or other mutations
		PLCG2 mutations

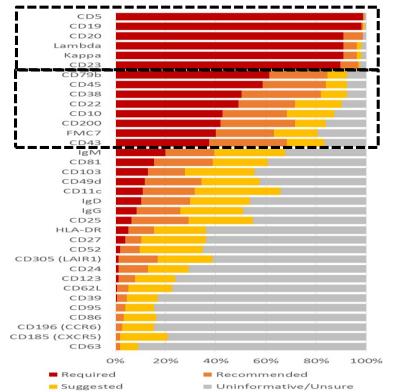
Acquired mutations and ibrutinib/venetoclax resistance

BTK	PLCG2	BCL-2
57%	13%	47%
Loss of covalent binding of Activating BCR signaling ibrutinib to BTK independent of BTK		Disruption of the bond of venetoclax to BCL-2
C481S	Different subclones coexist with low allelic burden	G101V (subclonal)
C481R, C281F, C481Y, R28S, G164D, T316A, T474I/S, R490H, Q516K, L528W, V537I	F82S, P664S, R665W, S707Y, S707P, S707F, L845F, L845V, L845G, L848R, D993Y, D993H, D1140N, M1141K, M1141R, S1192G	D103Y, A103T, A103G, A103V, A113G, A129L, V156A
34.3 months (14–76.8)	35.1 months (17.4–64.6)	36 months (6.5–73)
	Pérez-Carretero C	Cet al. Diagnostics (Basel). 2021 May 10;11(5)
	57% Loss of covalent binding of ibrutinib to BTK C481S C481R, C281F, C481Y, R28S, G164D, T316A, T474I/S, R490H, Q516K, L528W, V537I	57%13%Loss of covalent binding of ibrutinib to BTKActivating BCR signaling independent of BTKC481SDifferent subclones coexist with low allelic burdenC481R, C281F, C481Y, R28S, G164D, T316A, T474I/S, R490H, Q516K, L528W, V537IF82S, P664S, R665W, S707Y, S707P, S707F, L845F, L845V, L845G, L848R, D993Y, D993H, D1140N, M1141K, M1141R, S1192G34.3 months (14–76.8)35.1 months (17.4–64.6)

MRD by flow cytometry: where are we

Recommended	Rationale
Measurable residual disease (MRD)	Replaces "minimal" residual disease as a more objective term
Undetectable-MRD (U-MRD)	As a general term, replaces MRD negative or MRD- as a more accurate term in cases where MRD threshold is not specified
MRD4, MRD5, etc.	Specifies upper limit of disease (e.g., MRD4 denotes $<0.01\%/<10^{-4}$ disease, MRD5 $< 0.001\%/<10^{-5}$ disease, etc) for an individual sample or for a group of patients in clinical trial reporting
Detectable (d) or undetectable (u) within an MRD category	Detectable = residual disease is below the stated threshold but measurable above the next MRD threshold. Undetectable = residual disease is not detectable, but the assay/ sample is not suitable for detection of disease at the next threshold MRD4d: $< 0.01\%/10^{-4}$ but $\ge 0.001\%/10^{-5}$ MRD4u: $< 0.01\%$, assay limit of detection does not reach $0.001\%/10^{-5}$
Always report assay method (e.g., Flow) and analysis technique (e.g., ERIC-FC)	Results may differ by assay method even for assays with identical sensitivity
Always report tissue assayed (e.g., PB, BM)	MRD may differ in different tissues from the same patient/timepoint
In clinical trials, always report MRD rate as percentage U-MRD in ITT population	Avoids confusion with the rate in the MRD-tested population, e.g., MRD4 rate = number of patients with $<0.01\%$ MRD as a percentage of the ITT population

BM bone marrow, CLL chronic lymphocytic leukemia, Flow flow cytometry, ITT intention-to-treat, PB peripheral blood.


A LAUT

ERIC/ESCCA recommendations

Cytometry Part B (Clinical Cytometry) 94B:121-128 (2018)

Original Article

Reproducible Diagnosis of Chronic Lymphocytic Leukemia by Flow Cytometry: An European Research Initiative on CLL (ERIC) & European Society for Clinical Cell Analysis (ESCCA) Harmonisation Project Andy C. Rawstron ⁽²⁾, ¹⁺ Karl-Anton Kreuzer, ² Asha Soosapilla, ³ Martin Spacek, ⁴ Olga Stehlikova, ^{5,6} Peter Gambell, ⁷ Neil McIver-Brown, ⁸ Neus Villamor, ⁹ Katherina Psarra, ¹⁰ Maria Arroz, ¹¹ Raffaella Milani, ¹² Javier de la Serna, ¹³ M. Teresa Cedena, ¹³ Ozren Jaksic, ¹⁴ Josep Nomdedeu, ¹⁵ Carol Moreno, ¹⁵ Gian Matteo Rigolin, ¹⁶ Antonio Cunco, ¹⁶ Preben Johansen, ^{17,18} Hans E. Johnsen, ^{17,18} Richard Rosenquist, ¹⁹ Carsten Utoft Niemann, ²⁰ Wolfgang Kern, ²¹ David Westerman, ⁶ Marek Trneny, ⁴ Stephen Mulligan, ³ Michael Doubek, ⁵ Sarka Pospisilova, ⁵ Peter Hillmen, ¹ David Oscier, ⁸ Michael Hallek, ² Paolo Ghia, ²² and Emili Montserrat²³

matology in

"required": *CD5, CD19, CD20, CD23, κ/λ* (>75% of respondents)

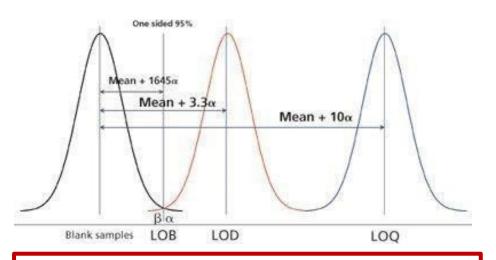
or "recommended": *CD10, CD43, CD79b, CD200* (>50% of respondents)

• ROR1 and CD200 or CD3 are recommended

- Facilitate analysis for less experienced operators
- Permit automated analysis
- Increase proportion of "atypical" cases that can be monitored
- Pre-treatment analysis is required to exclude atypical cases
- Clonality assessment is recommended

ESCCA European Society for Clinical Cell Analysis

Updates in Chronic Lymphocytic Leukemia and Lymphomas


LOB/LOD/LOQ for MRD detection

- Limit of Blank (LOB) → highest signal in the absence of measure, calculated as mean (blank) + 1.645 SD
- Limit of Detection (LOD) → level at which 95% of samples with low level are detected above the limit of blank, calculated as LOB + 1.645 SD
- Limit of Quantitation (LOQ) → lowest level that can be reliably detected and whose total error (bias + imprecision) meets a desired criterion for accuracy (clinical utility)

ERIC specification for the detection of CLL cells in a normal background

The minimum population size for reproducible detection of CLL cells in a multiparameter analysis \rightarrow 20 events

The minimum population size for reproducible quantification of CLL cells in multiparameter analysis \rightarrow 50 events

LOQ = 100 * **50** / numero totale di leucociti

LOD = 100 * **20** / numero totale di leucociti

- **LOB** = < **10** Eventi nei campioni normali
- **LOD** = > 20 Eventi rilevati nel campione
- **LOQ = > 50** Eventi rilevati nel campione

20 e 50 eventi derivano da stime statistiche

Silvia Heltai (IRCCS Ospedale San Raffaele, Milano)

Cell number required for MRD detection

MRD classification	Neoplastic cells / total normal cells	Neoplastic cells % of total cells	Scientific notation	Cell required for flow cytometry	Cells (DNA) required for molecular analysis
MRD3	<1/ thousand	<0.1%	10E-3 (10 ⁻³)	>20 thousand	>3 thousand (0.02µg DNA)
MRD4	<1/ 10 thousand	<0.01%	10E-4 (10 ⁻⁴)	>200 thousand	>30 thousand (0.2µg DNA)
MRD5	<1/ 100 thousand	<0.001%	10E-5 (10⁻⁵)	>2 million	>300 thousand (2µg DNA)
MRD6	<1/ million	<0.0001%	10E-6 (10 ⁻⁶)	>20 million	>3 million (20µg DNA)
MRD7	<1/ 10 million	<0.00001%	10E-7 (10 ⁻⁷)	>200 million	>30 million (120µg DNA)

Courtesy of Andy Rawstron

Conclusions and future directions

- CLL is an extremely heterogeneous disease, and risk stratification and prognostication are performed using the CLL-IPI that combines clinical, chromosomal, molecular alterations, and laboratory findings: age; disease stage; β2-microglobulin levels; presence of del(17p); and IGHV mutational status.
- Unmutated CLL has shorter survival and remission duration compared to M-CLL, as well as
 patients with del(17p)/TP53 mutations, even though clinical management of these subjects has
 markedly improved after the introduction of targeted therapies, such as ibrutinib, idelalisib, and
 venetoclax.
- Point mutations detection could greatly improve clinical management of those patients who develop BTKi resistance, as well as 11q deletion, *TP53* abnormalities, *IGHV* mutational status, complex karyotype and *NOTCH1* mutations.
- However, these systems require integration with other molecular and phenotypical markers, as shown using the IPS-E and ISS systems. Although individual factors can be a very important prognostic tool, reality is more complex, as each patient may harbor several biomarkers with different prognostic value.
- MRD by flow cytometry is still challenging in routinely clinical practice.

